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Abstract

In studies of all-cause mortality the fundamental epidemiological

concepts of rate and risk are connected through a well-defined one-to-

one relation. An important consequence of this relation is that regres-

sion models such as the proportional hazards model that are defined
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through the hazard (the rate) immediately dictate how the covariates

relate to the survival function (the risk). This introductory paper

reviews the concepts of rate and risk and their one-to-one relation

in all-cause mortality studies and introduces the analogous concepts

of rate and risk in the context of competing risks, the cause-specific

hazard and the cause-specific cumulative incidence function. The key

feature of competing risks is that the one-to-one correspondence be-

tween cause-specific hazard and cumulative incidence, between rate

and risk, is lost. This fact has two important implications. First,

the naive Kaplan-Meier which takes the competing events as censored

observations, is biased. Second, the way in which covariates are asso-

ciated with the cause-specific hazards may not coincide with the way

these covariates are associated with the cumulative incidence. An ex-

ample with relapse and non-relapse mortality as competing risks in a

bone marrow study is used for illustration.

Key words: censored data, competing risks, regression models, sur-

vival analysis.

1 Introduction

Epidemiology deals with the occurrence of diseases in populations when ob-

served over time, and the frequency with which diseased cases occur are

measured using the concepts of risk and rate. Standard text books in epi-

demiology (e.g. Rothman 10 , Chapter 3, dos Santos Silva 4 , Section 4.2) typ-

ically define the risk as the fraction D
N

of N originally disease-free individuals

in the population who develop the disease over a specified follow-up period,

say, from time 0 to time t. Note that the risk must necessarily increase with
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t. On the other hand, the rate would typically be defined as the number,

D, of individuals in the population who develop the disease during a speci-

fied follow-up period (from 0 to t) divided by the amount of person-time, Y

at risk observed when following disease-free individuals from the population

from 0 to t. The rate D
Y

may increase, stay roughly constant, or decrease

when varying the length, t of the follow-up period.

The statistical counterpart of a risk is a probability. Thus, if F (t) de-

notes the probability that a randomly selected disease-free individual gets

the disease before time t then the risk D
N

estimates F (t) if all N disease-free

individuals in the population are followed from 0 to t. However, in most

follow-up studies there will inevitably be loss to follow-up, censoring, and

F (t) must then be estimated using more complicated techniques able to ac-

count for censoring.

The statistical discipline that deals with censored follow-up data is sur-

vival analysis and in the next paragraphs we will summarize basic (perhaps

well-known) features of survival analysis. We will do that in the context

where the event under study (“the disease”) is all-cause mortality, that is,

an event which will occur with probability one if the follow-up period is suf-

ficiently long (t is “large”). However, our motivation for doing this is to set

the scene for the situation where observation of the disease under study may

be preceded by other events, the occurrence of which prevents us from ob-

serving the disease of interest. This competing risks situation (which is the

rule rather than the exception in epidemiological follow-up studies) is the

topic for the present paper. We shall discuss which concepts from classical

survival analysis (i.e., studies of all-cause mortality) immediately extend to
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competing risks and we shall discuss when to be more careful.

2 Survival analysis

In survival analysis the object is the time elapsed from an initiating event,

e.g. the onset of some disease, to death. If time to death was observed for

every one in the sample then the probability F (t) of dying before time t (the

cumulative incidence function), as explained above, could be estimated as

the relative frequency of survival times less than t. However, the challenge

is to estimate F (t) based on incomplete data, i.e. to make inference on the

underlying, potentially completely observed population in the presence of

censored observations. For this to be feasible, censoring must be independent,

that is, an individual censored at time t should be representative for those still

at risk at that time. In other words, those censored should not be individuals

with systematically high or low risk of dying. Under independent censoring,

F (t) may be estimated by 1− Ŝ(t) where Ŝ(t) is the Kaplan-Meier estimator

for the probability S(t) = 1 − F (t) of surviving time t. The Kaplan-Meier

estimator at time t is a product with a factor for each failure time before t.

The factor at failure time s is (1 − Ds

Ns
) where Ds is the number of failures

observed at s (often Ds = 1), and Ns the number of individuals in the study

still at risk, i.e. alive and uncensored, at time s.

The concept in survival analysis that corresponds to the rate is the hazard

function h(t). This has the interpretation that for a small interval from time

t to time t + d, h(t) · d is approximately the conditional probability of death

before time t + d given survival until time t. Thus, the hazard function

provides a dynamical (“local in time”) description of how the instantaneous
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risk of failing varies. The epidemiological rate D
Y

mentioned above is then

a sensible estimate for the hazard function if this is roughly time-constant,

i.e. when h(t) = h then ĥ = D
Y

estimates h.

In survival analysis there is a simple “one-to-one” correspondence between

the hazard function and the survival function, derived in Box 1. For any

If h(t) is constant then this is seen as follows. (If h(t) is not constant then a

similar argument applies.) We divide the interval from 0 to t into K small

intervals each of length d, that is t = Kd. Now, in order to survive time t

one must first survive the first little interval (from 0 to d). This happens, by

definition of the hazard, with probability 1 − h · d. Given survival through

the first little interval, the probability of surviving the next is also 1− h · d,

that is, the probability of surviving the first two intervals is (1 − h · d)(1 −

h · d) = (1− h · d)2. Continuing this argument it is seen that the probability,

S(t), of surviving time t = Kd, that is, of surviving K little intervals, is

(1− h · d)K = (1− h · t
K

)K . When K is large (and, thereby, d is small) this

expression equals e−ht, that is, the negative exponential of the cumulative

hazard function ht.

Box 1: Relation between hazard and survival function in survival analysis

hazard function (not necessarily constant) the relationship is

S(t) = e−H(t) or F (t) = 1− e−H(t) ,

where H(t) is the cumulative hazard function at time t. It follows that, for

given hazard function h(t) one may compute the survival function S(t) (or

the cumulative incidence function F (t)), and vice versa: for given cumulative

incidence the hazard may be computed. Under independent censoring the

cumulative hazard at time t may be estimated by the Nelson-Aalen estimator.
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This is a sum with a term for each failure time before t, the term at failure

time s being Ds

Ns
. Note how the “one-to-one correspondence” between rate and

risk is reflected in the Kaplan-Meier and Nelson-Aalen estimators which are

both based on the same basic pieces of information: the number of failures,

Ds and the number at risk, Ns at each failure time, s.

This has important consequences for the analysis of survival data because

models for the hazard function, e.g., the Cox regression model2 which is very

frequently used, immediately imply models for the cumulative incidence F (t).

Thus, if a Cox regression model is fitted for the hazard function and if, based

on this Cox model, presence of a certain factor is seen to be associated with

a higher hazard function then presence of the factor is also associated with a

higher cumulative incidence. The interpretation of the parameter estimated

in a Cox regression model is a hazard ratio.

Example

For illustration we use data of the European Group for Blood and Marrow

Transplantation (EBMT). The data consists of all chronic myeloid leukemia

(CML) patients, having received an allogeneic stem cell transplantation from

an HLA-identical sibling or a matched unrelated donor during the years

1997–2000. Patients had to be Philadelphia positive, transplanted with bone

marrow or peripheral blood, and 18 years of age or older, leaving 3982 pa-

tients. Median follow-up was 8.5 years. An important and very predictive

risk score is the EBMT risk score by Gratwohl et al. 8 , originally taking values

0 through 7, and often (also here) for convenience grouped into five distinct

groups, wih EBMT risk score 0, 1 (n = 506), 2 (n = 1159), 3 (n = 1218), 4
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(n = 745), and 5, 6, 7 (n = 354). Failure from transplantation may either

be due to relapse, or to non-relapse mortality (NRM). Often these two end-

points are taken together to define what is called relapse-free survival (RFS),

which is the time from transplantation to either relapse or death, whichever

comes first. Table 1 shows counts and observed percentages of these events

in each of the EBMT risk groups. The censored patients were alive without

relapse at the end of their follow-up.

[Table 1 about here.]

Figure 1 shows both the Nelson-Aalen estimates of the cumulative hazards

(left) and the Kaplan-Meier estimates of the survival curves (right) for RFS

for each of the five risk groups.

[Figure 1 about here.]

Cox regression for relapse-free survival gives hazard ratios (95% confidence

intervals) of 1.27 (1.08–1.48), 1.61 (1.38–1.88), 2.08 (1.77–2.45), and 3.26

(2.73–3.91) of EBMT risk groups 2, 3, 4, and 5/6/7, respectively, with respect

to the reference risk group of 0/1. Clearly, higher EBMT risk scores imply

higher rates of the composite endpoint relapse or death, consistent with the

left panel of Figure 1. Note that, due to the one-to-one correspondence

between rate and risk, higher EBMT score also implies higher risk of relapse

or death, i.e. lower relapse-free survival curves.

In conclusion, survival data (all-cause mortality data) may be characterized

either by the “global parameter”, the cumulative incidence function F (t)

or by the “local parameter”, the hazard function h(t). These two ways of

characterization are equivalent due to their one-to-one correspondence.
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3 Competing risks

Suppose now that the event of interest is the onset of a given disease but that,

obviously, individuals may die without getting the disease. We may then be

interested in the risk or probability of getting the disease in a given follow-up

period from 0 to t or in the rate or hazard of getting the disease. A naive

analysis inspired by the methods for survival analysis outlined above could

consider death without the disease as “independent censoring”, thereby aim-

ing at making inference for an underlying, potentially completely observed

population. However, that population would be one without “censoring”,

that is, a purely hypothetical population where individuals could not die

without the disease. A much more satisfactory approach, to be outlined in

the following, is one where one acknowledges that individuals may die with-

out the disease and where inference for disease risks and rates are made in

the presence of the competing risk of dying.

Define F1(t) as the probability (cumulative incidence) of getting the dis-

ease before time t. Define, further, the cause-specific hazard function for the

disease, h1(t) as follows: h1(t) · d is (approximately, when d is small) the

conditional probability of getting the disease before time t+d given that the

individual is alive and disease-free up to time t. Now, in each little interval

from t to t + d between time 0 and time t where the individual is still at

risk (alive and disease-free) he or she both has the possibility of getting the

disease or dying (without having got it). Therefore, the cumulative incidence

of getting the disease not only depends on h1(t) but also on the hazard of

dying. This cause-specific hazard of death, h2(t) is defined similarly to h1(t);

h2(t) · d is (approximately, when d is small) the conditional probability of
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dying before time t + d given that the individual is alive and disease-free up

to time t. The consequence is that in the presence of the competing risk

of death there is no longer a one-to-one correspondence between the (cause-

specific) hazard (the rate h1(t)) and the probability (cumulative incidence)

(the risk F1(t)) for the disease and in order to compute the cumulative inci-

dence, the cause-specific hazard for the competing event is also needed. The

relationship, derived in Box 2, is

F1(t) =
∫ t

0
e−H1(s)−H2(s) · h1(s) · ds .

This expression shows that, via the factor involving H2(t), the cumulative

incidence for one failure cause (here: the disease) depends on the rate (cause-

specific hazard) for the competing cause (here: death without the disease).

This is the key feature of competing risks. There is no longer a one-to-

one correspondence between cumulative incidence and cause-specific hazard

(“rate and risk”). This fact has two important implications:

1. a naive estimator for the cumulative incidence F1(t) which only studies

cause 1 events (disease cases), e.g. 1 minus the Kaplan-Meier estima-

tor based only on disease events and treating deaths as independent

censorings is (upwards) biased;

2. the way in which the cumulative incidence F1(t) is associated with

covariates may not coincide with the way in which the cause-specific

hazard h1(t) is associated with covariates, but will also depend on the

association between covariates and the cause-specific hazard for the

competing event h2(t).
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Divide the interval from 0 to t into many small intervals each of length d.

To get the disease before time t it must occur in exactly one of these small

intervals and the probability of getting the disease before time t, i.e. the

cumulative incidence F1(t), is therefore the sum of the probabilities of getting

the disease exactly in each little interval. The probability of getting the

disease in the little interval from time s to time s + d is the probability of

being alive and disease-free until time s times the conditional probability of

getting the disease between s and s + d given alive and disease-free at s.

The latter conditional probability is, by the definition of the cause-specific

hazard, (approximately) equal to h1(s) ·d while the probability of being alive

and disease-free (that is, the probability of staying event-free) until time s is

(by an argument similar to the one given above for survival data) equal to

e−H1(s)−H2(s). Here H1(s) and H2(s) are the cumulative cause-specific hazards

for the two competing events, disease and death without the disease. The

result is that F1(t) is a sum of terms given by e−H1(s)−H2(s) · h1(s) · d where

the sum is over all small intervals between 0 and t. Mathematically, this sum

is the integral

F1(t) =
∫ t

0
e−H1(s)−H2(s) · h1(s) · ds.

Box 2: Relation between cause-specific hazards and cumulative incidences

in competing risks

Example, continued

To illustrate the first point, consider the highest risk group, with EBMT risk

score 5, 6, 7. Figure 2 shows the naive Kaplan-Meier estimates for relapse

(censoring patients that died before relapse) and for non-relapse mortality
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(censoring patients with relapse) for this highest risk group. The estimate of

NRM is shown as a survival curve (starting at 1 and decreasing), the estimate

of relapse as an incidence curve (starting at 0 and increasing).

[Figure 2 about here.]

The estimated five-year probabilities of relapse and NRM, obtained from

these naive Kaplan-Meiers, are 0.515 and 0.569, respectively. It is clear that

these can never be unbiased estimates of the probabilities of relapse and

NRM at five years, since they add up to more than 1. This is impossible,

since relapse and NRM are mutually exclusive events. The correct estimates,

using the relation derived in Box 2, are shown in Figure 3. The previously

obtained naive Kaplan-Meier estimates are shown in grey.

[Figure 3 about here.]

The estimated five-year probabilities of relapse and NRM, obtained from this

relation, are 0.316 and 0.475, respectively, and the five-year RFS probability

is 1− 0.316− 0.475 = 0.209, exactly as obtained in the previous section (see

also Figure 1).

Next we turn to the second point: the way covariates affect hazards may

be different from the way they affect cumulative incidences. Figure 4 shows

Nelson-Aalen estimates of the cumulative cause-specific hazards of relapse

and non-relapse mortality for each of the five EBMT risk groups.

[Figure 4 about here.]

The overall picture is that higher EBMT risk score implies higher cause-

specific hazards. This is particularly clear for non-relapse mortality; the same
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is true in general for relapse, but the two lowest risk groups, those with risk

scores 0, 1, and with risk score 2, are approximately equal. Table 2 shows

the hazard ratios and 95% confidence intervals of the EBMT risk groups

for relapse and non-relapse mortality, obtained from two Cox proportional

hazards models, one for relapse (censoring patients dying without relapse),

the other for non-relapse mortality (censoring patients with relapse).

[Table 2 about here.]

Although, based on Figure 4, one could question the validity of the propor-

tional hazards assumption, we see from Table 2 that the cumulative cause-

specific hazards for relapse are quite similar for risk scores 0, 1 and for risk

score 2. If anything, the risk group with score=2 has slightly higher rate.

Note that while, as argued above, the Kaplan-Meier estimator should not

be used for risk estimation in the presence of competing risks, we have used

both the Nelson-Aalen estimator and the Cox regression model for the cause-

specific rates. We will return to an explanation of this apparent paradox in

the next section.

Based on these Cox models for the cause-specific hazards for relapse and

NRM, we calculated, again using the relation derived in Box 2, the model-

based cumulative incidences for relapse and NRM for each of the EBMT risk

groups. The results are shown in Figure 5.

[Figure 5 about here.]

Comparing these cumulative incidences of relapse for the two lowest risk

groups, we notice a striking thing: the cumulative incidence of relapse is

lower for the group with EBMT risk score 2, compared to the group with
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EBMT risk score 0, 1. Contrast this with what we saw earlier, namely that

there is no difference on the cause-specific hazard of relapse between these

two lowest risk groups (if anything, the rate for EBMT risk score 2 is higher).

The example thus shows that the effect of EBMT risk score on the risk of

relapse, the cumulative incidence, is different from its effect on the rate, the

cause-specific hazard. The fact that the cumulative incidence of relapse is

lower for the EBMT risk score 2 group, compared to the EBMT risk score

0, 1 group, even though the cause-specific hazard of relapse is (somewhat)

higher, can be seen as follows. Ignoring true censorings for the moment, the

rate, the cause-specific hazard of relapse, acts on those individuals still at

risk, i.e. on those alive without relapse. The Cox model tells us that, at any

point in time, this rate is higher for the EBMT risk score 2 group. But the

cause-specific hazard of the competing event, non-relapse mortality, is also

higher for the EBMT risk score 2 group, compared to the EBMT risk score

0, 1 group, and the difference here is much larger. That means that over time,

the risk set of the EBMT risk score 2 group decreases much more quickly than

that of the EBMT risk score 0, 1 group. As a result, even though, relative

to the size of the risk set, more individuals will have a relapse in the EBMT

risk score 2 group, in absolute size there will in fact be fewer individuals with

a relapse. Hence, the risk, the cumulative incidence of relapse, will be lower

in the EBMT risk score 2 group.

4 Risk and rate models for competing risks

Recall the useful interpretation of the hazard rate in all-cause mortality stud-

ies from Section 2: h(t) is approximately the instantaneous risk per time unit
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of failure at time t given survival till just before t. Thereby, the parameters

in the Cox regression model (see Example in that section) are hazard rate

ratios. The interpretation carries over verbatim to the cause-specific hazard

rate as introduced in Section 3: h1(t) is approximately the instantaneous risk

per time unit of failure at time t from cause 1 given survival till just before

t. Similarly, the parameters in Table 2 are ratios between cause-specific haz-

ards. Given the close similarity in interpretation, it is perhaps not entirely

surprising that estimation of hazard rate parameters carries over to estima-

tion of parameters in models for cause-specific hazards and, indeed, both

the Nelson-Aalen estimator and the Cox regression model may be applied

for cause-specific hazards in a fashion completely analogously to studies of

all-cause mortality by censoring individuals failing from competing causes.

We used this fact for the analyses in the Example in Section 3. The intuitive

explanation is that both types of hazard rates describe what happens locally

in time among individuals still at risk. The formal explanation, given in

Box 3, is that the likelihood factorizes.

To estimate risks, the results from a rate model may be plugged into the

relationship derived in Box 2. However, as seen in the Example in Section 3,

simple relationships between explanatory variables and cause-specific hazards

do not lead to simple relationships between explanatory variables and cumu-

lative incidences. Thus, though roughly identical relapse rates were seen for

EBMT risk groups 0/1 and 2, the risk of relapse was higher for EBMT risk

group 0/1 due to a lower rate of NRM for that group.

Such properties have motivated the development of models that directly

link the cumulative incidence to explanatory variables. The most popular
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model of this kind was introduced by Fine and Gray 5 and links the cumu-

lative incidence to explanatory variables in the same way as does the Cox

model for all-cause mortality, see Box 4.

Example (continued)

Table 3 shows the result of the Fine-Gray regression model for relapse and

NRM.

[Table 3 about here.]

The most striking aspect is the fact that the regression coefficient of EBMT

risk group 2 for relapse is less than 0, albeit not statistically significant. This

means that the cumulative incidence of relapse of EBMT risk group 2 is less

than that of EBMT risk group 0/1. This is in agreement with Figure 5,

although that was derived from a proportional cause-specific hazards model.

While the relative sizes of the regression coefficients in the Fine-Gray model

in a useful way reflect the ordering of the cumulative incidence curves, their

numerical values do not possess a simple interpretation. Thus, the estimates

in Table 3 are sub-distribution hazard ratios and while this sounds like a

hazard ratio, it is not. As noted above, the cause j-specific hazard gives the

rate of cause j failure per time unit for individuals who are still alive. On

the other hand, the cause j sub-distribution hazard gives the rate of cause j

failure per time unit for individuals who are either still alive or have already

died from causes other than j 5. Thus, a sub-distribution hazard bears no

resemblance to an epidemiological rate, since individuals who have died from

another cause remain in the risk set, even though they are no longer at risk of
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experiencing a cause j failure. This fact does complicate the interpretation

of parameters from the Fine-Gray model.

A final, technical note is that the structure assumed in a Cox model for

the cause-specific hazards (“proportional hazards”) is incompatible with that

of the Fine-Gray model (“proportional sub-distribution hazards”)7. This

means that careful checking of the model assumptions is important, both

when inference is based on Cox models for cause-specific hazards and when

it is based on Fine-Gray models.

Model checking may, initially, be performed graphically. Figure 6 shows

non-parametric estimates of the cumulative incidences of relapse and non-

relapse mortality for each of the five EBMT risk groups. The estimates of

the relapse cumulative incidence curves for EBMT risks groups 0/1 and 2

cross. In the same way as crossing survival curves for two groups in all-cause

mortality are an indication that the proportional hazards assumption may

be violated, this suggests that the proportionality assumption of the sub-

distribution hazards for relapse in the Fine-Gray model may be violated for

EBMT risks groups 0/1 and 2.

[Figure 6 about here.]

A similar graphical way of checking the proportional hazards assumption

of the proportional cause-specific hazards model is obtained by inspecting

the non-parametric cause-specific hazard estimates of Figure 4. Also here

the proportional hazards assumption is questionable, although (also for the

Fine-Gray model) it seems that only the EMBT risk group 0/1 for relapse is

causing the non-proportionality. On the other hand, crossing of the estimated

curves could just signal that the true functions are identical and the graphical
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examination can be complemented by formal significance testing, e.g. via the

scaled Schoenfeld residuals as in a standard Cox model6 or following the lines

of Andersen and Pohar Perme 1 .

5 ”Independent” competing risks

Throughout, we have discussed the ”rate of failure from cause j” or the ”risk

of failure from cause j” but never the ”time to failure from cause j”. This

is because for some individuals failure from cause j will never occur and

thereby, formally, allowing ”time to failure from cause j” to be infinite. In

contrast, a classical approach to competing risks is via latent failure times as

briefly summarized by Kalbfleisch and Prentice 9 (see Section 8.2.4). In that

approach one imagines the existence of random variables, L1, L2, represent-

ing time to failure from cause 1 and time to failure from cause 2, respectively.

The data then include the smaller of L1 and L2 (T = time to failure) and

the cause of failure (1 if T = L1, 2 if T = L2). (Right-censoring may be

accounted for.) While this, at a first glance, may seem an attractive idea,

the problem is that the distribution of (L1, L2) cannot be identified from the

data described in Box 3 without further, unverifiable, assumptions3;11. The

typical such assumption is ”independent” competing risks, that is, indepen-

dence between L1 and L2. This means that our incomplete observations of,

e.g. L1, are the same as those that would have been observed in a hypothet-

ical population where cause 2 is not operating. Since such an assumption

is completely unverifiable based on data from this world (where cause 2 is,

indeed, operating), we believe that the concept of ”independent” competing

risks is quite elusive and that analyses relying on “independence” should be
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interpreted with great care.

Finally, note that the likelihood factorization in Box 3 should not be taken

to be relying on an assumption of ”independence” between the competing

causes of failure. This factorization (and the resulting consequence that rates

of cause 1 may be analyzed by, formally, treating cause 2 events as censorings

and vice versa) solely relies on the definition of cause-specific hazards as the

time-local rates of occurrence of events that are mutually exclusive.

6 Discussion

In epidemiology, rates and risks are frequently used as measures of disease

incidence and in this paper we have re-iterated the fact that, in studies of all-

cause mortality, they are equivalent due to their one-to-one correspondence,

see Box 1. However, while both concepts generalize quite simply to the

competing risks situation (rates are now cause-specific hazards and risks are

cumulative incidences), a one-to-one correspondence between a single rate

and the corresponding risk no longer exists. Thus, any given cumulative

incidence depends on all cause-specific hazards (see Box 2) and vice versa,

and even though a single ”sub-distribution hazard” may be derived from a

single cumulative incidence, this is not a rate in any standard epidemiological

sense. Similarly, a ”risk-type quantity” may formally be defined by plugging

in a cause-specific hazard into the relationship derived in Box 1. However,

the resulting ”risk” may only be interpreted in a completely hypothetical

world where the competing risk does not exist, see Section 5. This is also

illustrated by the fact that the Kaplan-Meier estimator provides a biased

estimate of the cumulative incidence in the presence of competing risks as
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demonstrated in our example.

Another consequence of the lack of a one-to-one correspondence between

rate and risk in a competing risks setting is that covariates may affect the

cause-j specific hazard and the cause-j cumulative incidence differently. This

was also illustrated in our example showing that, when it comes to regression

modeling, there is a choice to be made whether models should focus on

cause-specific hazards or on cumulative incidences. Cox regression models

for cause-specific hazards have the advantage that they are easy to fit (simply

censor for competing events, see Box 3) and they provide parameter estimates

which possess simple rate ratio interpretations. Such models, however, do not

provide simple relationships between covariates and the easier interpretable

cumulative incidences. Such simple relationships may be obtained from Fine-

Gray models but the price to be paid is a set of parameter estimates which

are harder to interpret, see Box 4.

These properties, together with assessment of model fit, should be kept in

mind when deciding on how to make inference in a competing risks situation.

We believe, as also illustrated by our example, that both rates and risks

remain useful and tend to supplement each other when studying models for

competing risks. Cause-specific hazards may be more relevant when the

disease etiology is of interest, since it quantifies the event rate among the

ones at risk of developing the event of interest. Cumulative incidences are

easier to interpret and are more relevant for the purpose of prediction.
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Consider censored data in an all-cause mortality study consisting of inde-

pendent observations (T1, D1), . . . , (Tn, Dn) on n individuals. Here, Ti is the

time of observation for individual i: a failure time if Di = 1 and a time of

censoring if Di = 0. If the hazard rate function for the distribution of the

true failure time for i is hi(t) and the cumulative hazard is Hi(t), then the

likelihood under independent censoring is

La = h1(T1)
D1e−H1(T1) · · ·hn(Tn)Dne−Hn(Tn),

or written using the product symbol
∏

:

La =
n∏

i=1

hi(Ti)
Die−Hi(Ti).

Consider now competing risks data (T1, D1), . . . , (Tn, Dn) with Ti still denot-

ing the possibly censored time to failure and Di = 1 if i is observed to fail

from cause 1, Di = 2 if i is observed to fail from cause 2, and Di = 0 if i is

censored. If the (cumulative) cause-specific hazard for individual i and cause

j = 1, 2 is (Hij(t)) hij(t) then the likelihood under independent censoring is

Lc =
n∏

i=1

hi1(Ti)
I(Di=1)hi2(Ti)

I(Di=2)e−Hi1(Ti)−Hi2(Ti),

which can be re-written as

Lc = La1La2,

where

Laj =
n∏

i=1

hij(Ti)
I(Di=j)e−Hij(Ti), j = 1, 2.

It follows that the likelihood for cause 1 is the same as it would have been in

an all-cause mortality study considering only cause 1 failures and censoring

when individuals fail from cause 2.
Box 3: Likelihood factorization in a competing risks study.
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The Cox regression model specifies the hazard rate for given explanatory

variables Z as

h(t | Z) = h0(t) exp(βZ),

where the baseline hazard h0(t) is the hazard rate when Z = 0. For an

all-cause mortality study the risk of failure before time t is

F (t) = 1− exp(−H(t))

(see Box 1). It follows that for a Cox model

− log(1− F (t | Z)) = H0(t) exp(βZ),

where H0(t) is the cumulative baseline hazard.

The Fine-Gray model specifies the same sort of dependence on explanatory

variables for the cumulative cause j incidence in a competing risks model,

i.e.

− log(1− Fj(t | Z)) = H̃0(t) exp(BjZ).

As explained in the text, the right-hand side of this equation is the cumu-

lative cause j sub-distribution hazard and as a consequence, the regression

coefficients exp(Bj) are sub-distribution hazard ratios.

Box 4: Relationship between covariates and risk in the Cox model for all-

cause mortality and in the Fine-Gray model for competing risks.
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Figure 1: Nelson-Aalen estimates of the cumulative hazards (left) and the
Kaplan-Meier estimates of the survival curves (right) for RFS for each of the
five EBMT risk groups.
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Figure 2: Naive Kaplan-Meier estimates of relapse and non-relapse mortality,
shown as incidence and survival curves, respectively.
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Figure 3: Cumulative incidence estimates of relapse and non-relapse mortal-
ity, shown as incidence and survival curves, respectively; naive Kaplan-Meier
estimates are shown in grey.
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Figure 4: Nelson-Aalen estimates of the cumulative cause-specific hazards of
relapse and non-relapse mortality for each of the five EBMT risk groups.
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Figure 5: Model-based cumulative incidence estimates for relapse and non-
relapse mortality for each of the five EBMT risk groups.
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Figure 6: Non-parametric cumulative incidence estimates for relapse and
non-relapse mortality for each of the five EBMT risk groups.
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EBMT Total Relapse NRM Censored
risk group n(%) n(%) n(%)
0,1 506 113 (22.3%) 94 (18.6%) 299 (59.1%)
2 1159 247 (21.3%) 323 (27.9%) 589 (50.8%)
3 1218 292 (24.0%) 404 (33.2%) 522 (42.9%)
4 745 193 (25.9%) 300 (40.3%) 252 (33.8%)
5,6,7 354 112 (31.6%) 169 (47.7%) 73 (20.6%)

Table 1: Number of censored observations and number of events for relapse
and non-relapse mortality (NRM) in each of the EBMT risk groups.
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EBMT Relapse NRM
risk group HR 95% CI HR 95% CI
0, 1
2 1.01 0.81–1.27 1.57 1.25–1.97
3 1.28 1.03–1.59 2.01 1.61–2.52
4 1.57 1.25–1.99 2.68 2.12–3.37
5, 6, 7 2.67 2.06–3.47 3.98 3.09–5.13

Table 2: Cause-specific hazard ratios and 95% confidence intervals (CIs) of
the EBMT risk groups for relapse and non-relapse mortality.
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EBMT Relapse NRM
risk group B SE B SE
0, 1
2 -0.068 0.111 0.443 0.116
3 0.072 0.108 0.661 0.114
4 0.161 0.117 0.906 0.118
5, 6, 7 0.439 0.135 1.185 0.131

Table 3: Estimated regression coefficients (B) and associated standard errors
(SE) of the EBMT risk groups for relapse and non-relapse, for Fine-Gray
regression.

34



Research Reports available from Department of Biostatistics   
 
http://www.pubhealth.ku.dk/bs/publikationer 
________________________________________________________________________________ 
       
  
    
   
 Department of Biostatistics 
 University of Copenhagen 
 Øster Farimagsgade 5 
 P.O. Box 2099   
 1014 Copenhagen K 
 Denmark 
 
 
 
10/1 Andersen, P.K. & Skrondal, A. “Biological” interaction from a statistical point of view. 
 
10/2 Rosthøj, S., Keiding, N., Schmiegelow, K. Application of History-Adjusted Marginal 

Structural Models to Maintenance Therapy of Children with Acute Lymphoblastic 
Leukaemia. 

 
10/3 Parner, E.T. & Andersen, P.K. Regression analysis of censored data using pseudo-

observations. 
 
10/4 Nielsen, T. & Kreiner, S. Course Evaluation and Development: What can Learning Styles 

Contribute? 
 
10/5 Lange, T. & Hansen, J.V. Direct and Indirect Effects in a Survival Context. 
 
10/6 Andersen, P.K. & Keiding, N. Interpretability and importance of functionals in competing 

risks and multi-state models. 
 
10/7 Gerds, T.A., Kattan, M.W., Schumacher, M. & Yu, C. Estimating a time-dependent 

concordance index for survival prediction models with covariate dependent censoring. 
 
10/8 Mogensen, U.B., Ishwaran, H. & Gerds, T.A. Evaluating random forests for survival 

analysis using prediction error curves. 
 
11/1  Kreiner, S. Is the foundation under PISA solid? A critical look at the scaling model 

underlying international comparisons of student attainment. 
 
11/2 Andersen, P.K., Geskus, R.B. & Putter, H. Competing risks in epidemiology: Possibilities 

and pitfalls. 


	rr-forside-11-2.pdf
	Research Report 11/2
	Department of Biostatistics
	University of Copenhagen



